无理数的由来
无理数的由来:
公元前500年,古希腊毕达哥拉斯学派的弟子希伯修斯发现了一个惊人的事实,一个正方形的对角线与其一边的长度是不可公度的(若正方形边长是1。则对角线的长不是一个有理数),这一不可公度性与毕氏学派“万物皆为数”(只有理数)的哲理大相径庭。这一发现使该学派领导人惶恐、恼怒,认为这将动摇他们在学术界的统治地位。希伯修斯因此被囚禁,受到百般折磨, 后竟遭到沉舟身亡的惩处。
毕氏弟子的发现, 一次向人们揭示了有理数的缺陷,证明它不能同连续的无限直线同等看待,有理数没有布满数轴上的点,在数轴上存在着不能用有理数表示的“空隙”。而这种“空隙”经后人证明简直多得“不可胜数”。于是,古希腊人把有理数视为连续衔接的那种“算术连续统”的设想彻底的破灭了。不可公度的发现连同著名的芝诺悖论一同被称为数学史上的 一次危机对以后两千多年数学的发展产生了深远的影响,促使人们从依靠直觉、经验而转向依靠证明,推动了公理几何学与逻辑学的发展,并且孕育了微积分的思想萌芽。