分部积分法公式什么时候用
分部积分法公式主要适用于求∫u(x)v´(x)dx比较困难,求∫u´(x)v(x)dx比较容易的情形。
分部积分法是微积分学中的一类重要的、基本的计算积分的方法。是由微分的乘法法则和微积分基本定理推导而来的。主要原理是将不易直接求结果的积分形式,转化为等价的易求出结果的积分形式的。
常用的分部积分的根据组成被积函数的基本函数类型,将分部积分的顺序整理为口诀:“反对幂指三”。分别代指五类基本函数:反三角函数、对数函数、幂函数、指数函数、三角函数的积分。
分部积分法公式主要适用于求∫u(x)v´(x)dx比较困难,求∫u´(x)v(x)dx比较容易的情形。
分部积分法是微积分学中的一类重要的、基本的计算积分的方法。是由微分的乘法法则和微积分基本定理推导而来的。主要原理是将不易直接求结果的积分形式,转化为等价的易求出结果的积分形式的。
常用的分部积分的根据组成被积函数的基本函数类型,将分部积分的顺序整理为口诀:“反对幂指三”。分别代指五类基本函数:反三角函数、对数函数、幂函数、指数函数、三角函数的积分。