不定积分的意义
不定积分的几何意义是被积函数与坐标轴围成的面积,x轴之上部分为正,x轴之下部分为负,根据cosx在[0,2π]区间的图像可知,正负面积相等,因此其代数和等于0。
若F是f的一个原函数,则称y=F(x)的图像为f的一条积分曲线。f的不定积分在几何上表示f的某一积分曲线沿着纵轴方向任意平移,所得到的一切积分曲线所组成的曲线族。
不定积分的几何意义是被积函数与坐标轴围成的面积,x轴之上部分为正,x轴之下部分为负,根据cosx在[0,2π]区间的图像可知,正负面积相等,因此其代数和等于0。
若F是f的一个原函数,则称y=F(x)的图像为f的一条积分曲线。f的不定积分在几何上表示f的某一积分曲线沿着纵轴方向任意平移,所得到的一切积分曲线所组成的曲线族。