a与b相似有哪些推论
A,B相似存在可逆矩阵P满足P^-1AP=B。则A,B的特征多项式相同,特征值相同,行列式相同,迹相同。这都是相似的必要条件。
相似的充要条件超出了线性代数的范围。如特征多项式等价,行列式因子相同。
设A、B都是n阶矩阵,若存在可逆矩阵P,使P^(-1)AP=B,则称B是A的相似矩阵,并称矩阵A与B相似,记为A~B。
对进行运算称为对进行相似变换,称可逆矩阵为相似变换矩阵。
A,B相似存在可逆矩阵P满足P^-1AP=B。则A,B的特征多项式相同,特征值相同,行列式相同,迹相同。这都是相似的必要条件。
相似的充要条件超出了线性代数的范围。如特征多项式等价,行列式因子相同。
设A、B都是n阶矩阵,若存在可逆矩阵P,使P^(-1)AP=B,则称B是A的相似矩阵,并称矩阵A与B相似,记为A~B。
对进行运算称为对进行相似变换,称可逆矩阵为相似变换矩阵。