向量组等价和矩阵等价有什么区别
向量组等价和矩阵等价是两个不同的概念。前者是从能够互相线性表出的角度给出定义;后者是从初等变换的角度给出定义。向量组(必须包含向量个数相同)等价能够推出矩阵等价。但是矩阵等价不一定能推出向量组等价。
向量组等价,是两向量组中的各向量,都可以用另一个向量组中的向量线性表示。
矩阵等价,是存在可逆变换(行变换或列变换,对应于1个可逆矩阵),使得一个矩阵之间可以相互转化。
如果是行变换,相当于两矩阵的列向量组是等价的。
如果是列变换,相当于两矩阵的行向量组是等价的。
由于矩阵的行秩,与列秩相等,就是矩阵的秩,在行列数都相等的情况下,两矩阵等价实际上就是秩相等,反过来,在这种行列数都相等情况下,秩相等,就说明两矩阵等价。