怎么判断是几阶无穷小
设这个函数是f(x),则计算极限lim(x->0)f(x)/x^n,如果当n=p-1时,极限值=0。当n=p时,极限值=常数,则可以判断,f(x)是x^p的同阶无穷小,当这个常数=1时,f(x)是x^p的等价无穷小。根据常数所对应的阶数就可以判断是几阶无穷小。
无穷小量
无穷小量是极限为0的变量而不是数量0,是指自变量在一定变动方式下其极限为数量0,称一个函数是无穷小量,一定要说明自变量的变化趋势。例如:在时是无穷小量,而不能笼统说是无穷小量。也不能说无穷小是,是指负无穷大。无穷小量通常用小写希腊字母表示,如α、β、ε等,有时候也用α(x)、ο(x)等,表示无穷小量是以x为自变量的函数。
无穷大和无穷小的关系是无穷大的倒数等于无穷小,无穷小的倒数(当其不等于0时,因为此时倒数才有意义,而无穷小量是可能取0的)是无穷大量。